题目内容
在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.
设等比数列的公比为q,
由已知可得,a1q-a1=2,4a1q=3a1+a1q2
联立可得,a1(q-1)=2,q2-4q+3=0
∴
或q=1(舍去)
∴sn=
=
由已知可得,a1q-a1=2,4a1q=3a1+a1q2
联立可得,a1(q-1)=2,q2-4q+3=0
∴
|
∴sn=
| 1-3n |
| 1-3 |
| 3n-1 |
| 2 |
练习册系列答案
相关题目
在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=( )
| A、(2n-1)2 | ||
B、
| ||
| C、4n-1 | ||
D、
|