题目内容

已知命题P函数y=loga(1-2x)在定义域上单调递增;命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立若P∨Q是真命题,求实数a的取值范围.
分析:根据对数函数的函数性,复合函数的单调性,我们可以可以得到命题P为真时,实数a的取值范围;根据二次不等式恒成立的条件,我们可以得到命题Q成立时,实数a的取值范围;再根据P∨Q是真命题时,两个命题中至少一个为真,进而可以求出实数a的取值范围.
解答:解:∵命题P函数y=loga(1-2x)在定义域上单调递增;
∴0<a<1(3分)
又∵命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;
∴a=2(2分)
a-2<0
△=4(a-2)2+16(a-2)<0
,(3分)
即-2<a≤2(1分)
∵P∨Q是真命题,
∴a的取值范围是-2<a≤2(5分)
点评:本题考查的知识点是命题真假判断与应用,其中根据对数函数的函数性,复合函数的单调性,及二次不等式恒成立的条件,判断命题P与Q的真假是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网