题目内容
9.设i为虚数单位,复数z=(1+i)2+2,则z的共轭复数为( )| A. | -2i | B. | 2i | C. | 2-2i | D. | 2+2i |
分析 利用复数的乘法运算法则求出复数z,然后求出共轭复数.
解答 解:z=(1+i)2+2=1+2i+i2=2i+2=2+2i,
所以z的共轭复数是2-2i,
故选:C
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.
练习册系列答案
相关题目
20.
如图,在边长为1的正三角形ABC中,E,F分别为边AB,AC上的动点,且满足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分别是EF,BC的中点,则|$\overrightarrow{MN}$|的最小值为( )
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{5}{3}$ |
17.已知$\frac{a+3i}{i}$=b+i(a,b∈R,i为虚数单位),则a+b等于( )
| A. | -4 | B. | -2 | C. | 2 | D. | 4 |
4.在一台车床上生产某种零件,此零件的月产量与零件的市场价格具有随机性,且互不影响,其具体情况如表:
表1:零件某年的每月产量(个/月)
表2:零件市场价格(元/个)
(Ⅰ) 请你根据表1中所给的数据,判断该零件哪个季度的月产量方差最大;(结论不要求证明)
(Ⅱ) 随机抽取该种零件的一个月的月产量记为X,求X的分布列;
(Ⅲ)随机抽取该种零件的一个月的月产量,设Y表示该种零件的月产值,求Y的分布列及期望.
表1:零件某年的每月产量(个/月)
| 月份 | 第一季度 | 第二季度 | 第三季度 | 第四季度 | ||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| 产量 | 500 | 400 | 625 | 625 | 500 | 500 | 500 | 500 | 500 | 400 | 400 | 625 |
| 零件市场价格 | 8 | 10 |
| 概率 | 0.4 | 0.6 |
(Ⅱ) 随机抽取该种零件的一个月的月产量记为X,求X的分布列;
(Ⅲ)随机抽取该种零件的一个月的月产量,设Y表示该种零件的月产值,求Y的分布列及期望.
18.若向量$\overrightarrow{a}$=(2,x+1),$\overrightarrow{b}$=(x+2,6),又$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角,则实数x的取值范围为( )
| A. | {x|x>-$\frac{5}{4}$且x≠2} | B. | {x|x>-$\frac{5}{4}$} | C. | {x|x<-$\frac{5}{4}$且x≠-5} | D. | {x|x<-$\frac{5}{4}$} |
19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{f(x-1)+1(x>0)}\end{array}\right.$,g(x)=f(x)-x,把函数g(x)的零点按从小到大的顺序排列成一个数列,则该数的前n项和为( )
| A. | Sn=$\frac{n(n-1)}{2}$ | B. | Sn=$\frac{n(n+1)}{2}$ | C. | Sn=2n-1 | D. | Sn=2n-1-1 |