题目内容

若0≤x≤π,则方程2•cosx+1=0的解x=
2
3
π
2
3
π
分析:把2cosx+1=0,等价转化为cosx=-
1
2
,已知0≤x≤π,根据三角函数的性质求出x;
解答:解:∵0≤x≤π,则方程2•cosx+1=0,
∴cosx=-
1
2
,x=2kπ±
2
3
π
,k∈Z.因为0≤x≤π,
∴x=
2
3
π

故答案为:
2
3
π
点评:本题考查三角函数的性质和应用,解题时要认真审题,仔细解答,此题是一道基础题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网