题目内容

19.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(1)求f(2)与f($\frac{1}{2}$),f(3)与f($\frac{1}{3}$)
(2)证明:f(x)+f($\frac{1}{x}$)=1.

分析 (1)由f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$=1-$\frac{1}{{x}^{2}+1}$,能求出求f(2)与f($\frac{1}{2}$),f(3)与f($\frac{1}{3}$)的值.
(2)由f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,能证明f(x)+f($\frac{1}{x}$)=1.

解答 解:(1)由f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$=1-$\frac{1}{{x}^{2}+1}$,
∴f(2)=1-$\frac{1}{{2}^{2}+1}$=$\frac{4}{5}$,f($\frac{1}{2}$)=1-$\frac{1}{\frac{1}{4}+1}$=$\frac{1}{5}$.
f(3)=1-$\frac{1}{{3}^{2}+1}$=$\frac{9}{10}$,f($\frac{1}{3}$)=1-$\frac{1}{\frac{1}{9}+1}$=$\frac{1}{10}$.
证明:(2)∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$
=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{{x}^{2}+1}$=1.
故f(x)+f($\frac{1}{x}$)=1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网