题目内容

15.已知△ABC中,AB=2,$AC=\sqrt{2}BC$,则△ABC的面积的最大值为 (  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.2D.$\frac{2}{3}$$\sqrt{3}$

分析 设BC=a,则AC=$\sqrt{2}$a,利用余弦定理可求得cos2B=$\frac{1}{{a}^{2}}$+$\frac{{a}^{2}}{16}$-$\frac{1}{2}$,再利用三角形的面积公式可求得S△ABC=asinB,继而可求S△ABC2=-$\frac{1}{16}$(a2-12)2+8,从而可得△ABC面积的最大值.

解答 解:依题意,设BC=a,则AC=$\sqrt{2}$a,又AB=2,
由余弦定理得:($\sqrt{2}$a)2=a2+AB2-2a•ABcosB,
即a2+4acosB-4=0,
∴cosB=$\frac{4-{a}^{2}}{4a}$=$\frac{1}{a}$-$\frac{a}{4}$,
∴cos2B=$\frac{1}{{a}^{2}}$+$\frac{{a}^{2}}{16}$-$\frac{1}{2}$,
∴sin2B=1-cos2B=$\frac{3}{2}$-$\frac{{a}^{2}}{16}$-$\frac{1}{{a}^{2}}$.
∵S△ABC=$\frac{1}{2}$AB•BCsinB=$\frac{1}{2}$×2asinB=asinB,
∴S2△ABC=a2sin2B=a2($\frac{3}{2}$-$\frac{{a}^{2}}{16}$-$\frac{1}{{a}^{2}}$)=-$\frac{{a}^{4}}{16}$+$\frac{3}{2}$a2-1=-$\frac{1}{16}$(a4-24a2)-1=-$\frac{1}{16}$(a2-12)2+8,
当a2=12,即a=2$\sqrt{3}$时,2、2$\sqrt{3}$、2$\sqrt{6}$能组成三角形,
∴S2max=8,
∴Smax=2$\sqrt{2}$.
故选:A.

点评 本题考查余弦定理与正弦定理的应用,着重考查转化思想与二次函数的配方法,求得S2△ABC=-$\frac{1}{16}$(a2-12)2+8是关键,也是难点,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网