题目内容
分析:由题意知
(S1+S2+…+Sn-1)=
[(n-1)-
],由此能够推导出这些三角形的面积之和的极限.
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2n |
| 12+ 22+…+(n-1)2 |
| n2 |
解答:解:p1(
,0),p2(
,0),…,pn-1(
,0);Q1(
,1-(
)2),Q2(
,1-(
)2),…,Qn-1(
,1-(
)2),记△QnPn-1Pn的面积为Sn,则S1=
-
-[1-(
)2],S2=
-
-[1-(
)2],…,Sn-1=
-
-[1-(
)2];
(S1+S2+…+Sn-1)=
[(n-1)-
]=
-
=
-
=
.
答案:
.
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 2 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2n |
| 12+ 22+…+(n-1)2 |
| n2 |
| 1 |
| 2 |
| lim |
| n→∞ |
| (n-1)(n-2)(2n-3) |
| 12n3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
答案:
| 1 |
| 3 |
点评:本题考查极限的求法,解题时要注意观察分析能力和归纳总结能力的培养.
练习册系列答案
相关题目