题目内容
| sin7°+cos15°sin8° | cos7°-sin15°sin8° |
分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.
解答:解:
=
=
=
=
=
=
=
=tan15°=tan(45°-30°)=
=
=2-
,
故答案为:2-
| sin7°+cos15°sin8° |
| cos7°-sin15°sin8° |
| sin7°+cos(7°+8°)sin8° |
| cos7°-sin(7°+8°)sin8° |
=
| sin7°+(cos7°cos8°-sin7°sin8°)sin8° |
| cos7°-(sin7°cos8°+sin8°cos7°)sin8° |
=
| sin7°+cos7°cos8°sin8°-sin7°sin28° |
| cos7°-sin7°sin8°cos8°-sin28°cos7° |
=
| sin7°-sin7°sin28°+cos7°cos8°sin8° |
| cos7°-sin28°cos7°-sin7°sin8°cos8° |
=
| sin7°(1-sin28°)+cos7°cos8°sin8° |
| cos7°(1-sin28°)-sin7°sin8°cos8° |
=
| sin7°cos8°+cos7°sin8° |
| cos7°cos8°-sin7°sin8° |
=
| sin(7°+8°) |
| cos(7°+8°) |
| tan45°-tan30° |
| 1+tan45°tan30° |
=
1-
| ||||
1+
|
=2-
| 3 |
故答案为:2-
| 3 |
点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.
练习册系列答案
相关题目