题目内容

(1)若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围;

(2)y=kx2-x+1在[0,+∞)上单调递减,求实数k的取值范围.

思路分析:(1)二次函数的单调区间依赖于其对称轴的位置,处理二次函数的单调性问题需对对称轴进行讨论.(2)y=kx2-x+1中的k是否为零要注意讨论.

解:(1)f(x)=x2+2(a-1)x+2,其对称轴为x==1-a,若要二次函数在(-∞,4]上单调递减,必须满足1-a≥4,即a≤-3.如图所示.

    (2)k=0时,y=-x+1满足题意;k>0时,抛物线开口向上,在[0,+∞)上不可能单调递减;k<0时,对称轴x=<0在[0,+∞)上单调递减.

    综上,k≤0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网