题目内容

如图,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是,点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求点D的坐标.

解析:过D作DE⊥BC,垂足为E,在Rt△BDC中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=

∴DE=CDsin30°=,

OE=OB-BE=OB-BDcos60°=.

∴D点坐标为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网