题目内容

(2013•唐山二模)已知函数f(x)=xlnx-
a2
x2,a∈
R
(Ⅰ)若f(x)在(0,+∞)单调递减,求a的最小值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围.
分析:(Ⅰ)求导函数,利用f(x)在(0,+∞)单调递减,可得不等式,分离参数,求最值,即可求a的最小值;
(Ⅱ)分类讨论,利用导数确定函数的单调性,利用f(x)有两个极值点,即可求a的取值范围.
解答:解:(Ⅰ)求导函数可得f′(x)=lnx+1-ax.
f(x)在(0,+∞)单调递减当且仅当f′(x)≤0,即?x∈(0,+∞),a≥
lnx+1
x
.①
设g(x)=
lnx+1
x
,则g′(x)=-
lnx
x2

当x∈(0,1)时,g′(x)>0,g(x)单调递增;
当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.
所以g(x)≤g(1)=1,故a的最小值为1.…(5分)
(Ⅱ)①由(Ⅰ)知,当a≥1时,f(x)没有极值点.
②当a≤0时,f′(x)单调递增,f′(x)至多有一个零点,f(x)不可能有两个极值点.…(7分)
③当0<a<1时,设h(x)=lnx+1-ax,则h′(x)=
1
x
-a.
当x∈(0,
1
a
)时,h′(x)>0,h(x)单调递增;
当x∈(
1
a
,+∞)时,h′(x)<0,h(x)单调递减.…(9分)
因为f′(
1
a
)=h(
1
a
)=ln
1
a
>0,f′(
1
e
)=h(
1
e
)=-
a
e
<0,
所以f(x)在区间(
1
e
1
a
)有一极小值点x1.…(10分)
由(Ⅰ)中的①式,有1≥
lnx+1
x
,即lnx≤x-1,则ln
1
a
1
a
-1,
故f′(
2
a2
)=h(
2
a2
)=ln2+2ln
1
a
+1-
2
a
≤ln2+2(
1
a
-1)+1-
2
a
=ln2-1<0.
所以f(x)在区间(
1
a
2
a2
)有一极大值点x2
综上所述,a的取值范围是(0,1).…(12分)
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查分类讨论的数学思想,有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网