题目内容
已知公差不为0的等差数列{an}的首项a1=2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求数列{
}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求数列{
| 1 |
| Sn |
(Ⅰ)设等差数列{an}的公差为d(d≠0),
由题意得a22=a1a4,即(a1+d)2=a1(a1+3d),
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得Sn=na1+
d=2n+n(n-1)=n2+n,
∴
=
=
=
-
.
则Tn=
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
,
所以数列{
}的前n项和Tn=
.
由题意得a22=a1a4,即(a1+d)2=a1(a1+3d),
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得Sn=na1+
| n(n-1) |
| 2 |
∴
| 1 |
| Sn |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
则Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
所以数列{
| 1 |
| Sn |
| n |
| n+1 |
练习册系列答案
相关题目
已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
的值为( )
| S3-S2 |
| S5-S3 |
| A、2 | ||
| B、3 | ||
C、
| ||
| D、不存在 |