题目内容
(1)若
=3,tan(α-β)=2,求tan(β-2α)的值;
(2)已知sin(3π+θ)=
,求
+
.
解:(1)若
=3,则有
=3,解得 tanα=2.
又tan(α-β)=2,∴tan(β-α)=-2,
∴tan(β-2α)=tan[(β-α)-α]=
=
=
.
(2)∵已知sin(3π+θ)=
=-sinθ,∴sinθ=-
.
∴
+
=
+
=
+
=
+
=
=
=18.
分析:(1)由条件利用同角三角函数的基本关系求得 tanα=2,由tan(α-β)=2 可得tan(β-α)=-2,再利用两角和差的正切公式求得tan(β-2α)=tan[(β-α)-α]的值.
(2)由sin(3π+θ)=
=-sinθ,求得sinθ=-
,再利用诱导公式求得所求式子的值.
点评:本题主要考查同角三角函数的基本关系,诱导公式、以及两角和差的正切公式的应用,属于中档题.
又tan(α-β)=2,∴tan(β-α)=-2,
∴tan(β-2α)=tan[(β-α)-α]=
(2)∵已知sin(3π+θ)=
∴
=
分析:(1)由条件利用同角三角函数的基本关系求得 tanα=2,由tan(α-β)=2 可得tan(β-α)=-2,再利用两角和差的正切公式求得tan(β-2α)=tan[(β-α)-α]的值.
(2)由sin(3π+θ)=
点评:本题主要考查同角三角函数的基本关系,诱导公式、以及两角和差的正切公式的应用,属于中档题.
练习册系列答案
相关题目