题目内容

已知f(n)=1+
1
23
+
1
33
+
1
43
+…+
1
n3
,g(n)=
3
2
-
1
2n2
,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明..
分析:(1)根据已知f(n)=1+
1
23
+
1
33
+
1
43
…+
1
n3
g(n)=
3
2
-
1
2n2
,n∈N*.我们易得当n=1,2,3时,两个函数函数值的大小,比较后,根据结论我们可以归纳推理得到猜想f(n)≤g(n);
(2)但归纳推理的结论不一定正确,我们可用数学归纳法进行证明,先证明不等式f(n)≤g(n)当n=1时成立,再假设不等式f(n)≤g(n)当n=k(k≥1)时成立,进而证明当n=k+1时,不等式f(n)≤g(n)也成立,最后得到不等式f(n)≤g(n)对于所有的正整数n成立;
解答:解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);
当n=2时,f(2)=
9
8
g(2)=
11
8

所以f(2)<g(2);
当n=3时,f(3)=
251
216
g(3)=
312
216

所以f(3)<g(3).
(2)由(1),猜想f(n)≤g(n),下面用数学归纳法给出证明:
①当n=1,2,3时,不等式显然成立.
②假设当n=k(k≥3)时不等式成立,
1+
1
23
+
1
33
+
1
43
+
1
k3
3
2
-
1
2k2

那么,当n=k+1时,f(k+1)=f(k)+
1
(k+1)3
3
2
-
1
2k2
+
1
(k+1)3

因为
1
2(k+1)2
-(
1
2k2
-
1
(k+1)3
)=
k+3
2(k+1)3
-
1
2k2
=
-3k-1
2(k+1)3k2
<0

所以f(k+1)<
3
2
-
1
2(k+1)2
=g(k+1)

由①、②可知,对一切n∈N*,都有f(n)≤g(n)成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网