题目内容
2.已知f(x)=$(\frac{1}{{{a^x}-1}}+\frac{1}{2})$x3(a>0且a≠1)试讨论f(x)的奇偶性.分析 根据函数奇偶性的定义,即可判断f(x)的奇偶性;
解答 解:∵函数f(x)的定义域为{x|x≠0}.
∴定义域关于原点对称,
则f(x)=$(\frac{1}{{a}^{x}-1}+\frac{1}{2})$•x3=$\frac{{a}^{x}+1}{2({a}^{x}-1)}$•x3,
∴f(-x)=$\frac{{a}^{-x}+1}{2({a}^{-x}-1)}$•(-x)3=$\frac{1+{a}^{x}}{2(1-{a}^{x})}$•(-x3)=$\frac{{a}^{x}+1}{2({a}^{x}-1)}$•x3=f(x),
∴f(x)是偶函数;
点评 本题主要考查函数定义域以及函数奇偶性和单调性的应用,综合考查函数的性质.
练习册系列答案
相关题目
17.数列$\frac{1}{2}$,$\frac{2}{4}$,$\frac{3}{8}$,$\frac{4}{16}$,…的前10项的和为( )
| A. | $\frac{507}{256}$ | B. | $\frac{507}{128}$ | C. | $\frac{509}{128}$ | D. | $\frac{509}{256}$ |
7.函数y=$\sqrt{1-x}$+$\frac{1}{x+1}$的定义域为( )
| A. | {x|x≤1} | B. | {x|x≥1} | C. | {x|x<1,且x≠-1} | D. | {x|x≤1,且x≠-1} |