题目内容
【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数),以原点
为极点,以
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点
,
分别是曲线
,
上两动点且
,求
面积的最大值.
【答案】(Ⅰ)
,
;(Ⅱ)6
【解析】
(Ⅰ)根据题意,消参化简得曲线
的普通方程,对
的极坐标方程,两边同乘
,利用及坐标公式化简可得曲线
的直角坐标方程;
(Ⅱ)根据题意,设极坐标
,则
,分别代入极坐标方程中,求得
的值,
,根据三角函数有界性,即可求解最值.
(Ⅰ)由条件知消去参数
得到曲线
的普通方程为
.
因
可化为
,又
,
,代入得
,于是曲线
的直角坐标方程为
.
(Ⅱ)由条件知曲线
,
均关于
轴对称,而且外切于原点
,
不妨设
,则
,
因曲线
的极坐标方程为
,
所以
,
,
于是
,
所以当
时,
面积的最大值为6.
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为
| 1 | 2 | 3 | 4 | 5 |
P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,X表示经销一件该商品的利润.
(1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
;
(2)求X的分布列及期望
.
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的共同努力,新冠肺炎疫情得到了有效控制.作为集中医学观察隔离点的某酒店在疫情期间,为客人提供两种速食品—“方便面”和“自热米饭”.为调查这两种速食品的受欢迎程度,酒店部门经理记录了连续10天这两种速食品的销售量,得到如下频数分布表(其中销售量单位:盒):
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方便面 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 |
自热米饭 | 88 | 96 | 98 | 97 | 101 | 99 | 102 | 107 | 104 | 112 |
(1)根据两组数据完成下面的茎叶图(填到答题卡上);
![]()
(2)根据统计学知识,你认为哪种速食品更受欢迎,并简要说明理由;
(3)求自热米饭销售量y关于天数t的线性回归方程,并预估第12天自热米饭的销售量(结果精确到整数).
参考数据:
,
.
附:回归直线方程
,其中
,
.