题目内容
若an是(1+x)n+1(n∈N*)展开式中含x2项的系数,则
(
+
+…+
)=( )
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| A、2 | ||
| B、1 | ||
C、
| ||
| D、0 |
分析:
(
+
+…+
)=
(
+
+
+…+
)=2
(1-
),然后利用极限的运算公式进行计算.
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 2 |
| 2×1 |
| 2 |
| 3×2 |
| 2 |
| 4×3 |
| 2 |
| (n+1)×n |
| lim |
| n→∞ |
| 1 |
| n+1 |
解答:解:∵a1=C22=1,a2=
=
=3,a3=
=
=6,…,an=
=
,
∴
(
+
+…+
)=
(
+
+
+…+
)
=2
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=2
(1-
)
=2
=2.
故选A.
| C | 2 3 |
| 3×2 |
| 2×1 |
| C | 2 4 |
| 4×3 |
| 2×1 |
| C | 2 n+1 |
| (n+1)n |
| 2×1 |
∴
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 2 |
| 2×1 |
| 2 |
| 3×2 |
| 2 |
| 4×3 |
| 2 |
| (n+1)×n |
=2
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2
| lim |
| n→∞ |
| 1 |
| n+1 |
=2
| lim |
| n→∞ |
| n |
| n+1 |
=2.
故选A.
点评:本题考查极限的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目