题目内容
在直角坐标系中,圆C的参数方程为(为参数).
(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知,圆C上任意一点,求面积的最大值.
(1)已知,,且与的夹角为60°,求的值;
(2)在矩形中,,点为的中点,点在边上,若,求的值.
设,若,若,则的值为( )
A.0 B.-2 C.0或-2 D.0或±2
某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( )
A.10种 B.20种 C.30种 D.40种
已知,下列所给出的不能表示点的坐标的是( )
A. B. C. D.
箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是_________.
设是非空集合,定义={且},已知,,则等于 .
(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?
(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?
(3)现有10个保送上大学的名额,分配给7所学校,每校至少有一个名额,问:名额分配的方法共有多少种?