题目内容
已知A={x||x-1|≤1,x∈R},B={x|log2x≤1,x∈R},则“x∈A”是“x∈B”的( )
分析:利用绝对值不等式的解法与对数不等式的解法,我们易求出集合A,B,然后判断集合A,B的包含关系,即可得到“x∈A”是“x∈B”的什么条件.
解答:解:∵A={x||x-1|≤1,x∈R}
={x|-1≤x-1≤1}
={x|0≤x≤2},
B={x|log2x≤1,x∈R}
={x|log2x≤log22,x∈R}
={x|0<x≤2},
∵集合B是集合A的真子集,
∴“x∈A”是“x∈B”的必要不充分条件
故选:B
={x|-1≤x-1≤1}
={x|0≤x≤2},
B={x|log2x≤1,x∈R}
={x|log2x≤log22,x∈R}
={x|0<x≤2},
∵集合B是集合A的真子集,
∴“x∈A”是“x∈B”的必要不充分条件
故选:B
点评:本题考查的知识点是必要条件,充分条件与充要条件的判断,其中利用绝对值不等式的解法与对数不等式的解法,求出集合A,B,是解答本题的关键.
练习册系列答案
相关题目