题目内容
已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,….(Ⅰ)若a1=1,bn=n,求数列{an}的通项公式;
(Ⅱ)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ⅱ)若数列{
| an | n |
分析:(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{an}的通项公式;
(Ⅱ)(ⅰ)先根据题中已知条件推导出bn+6=bn,然后求出cn+1-cn为定值,便可证明数列{cn}为等差数列;
(ⅱ)数列{a6n+i}均为以7为公差的等差数列,然后分别讨论当ai=
时和当ai≠
时,数列{
}是否满足题中条件,便可求出a1应满足的条件.
(Ⅱ)(ⅰ)先根据题中已知条件推导出bn+6=bn,然后求出cn+1-cn为定值,便可证明数列{cn}为等差数列;
(ⅱ)数列{a6n+i}均为以7为公差的等差数列,然后分别讨论当ai=
| 7i |
| 6 |
| 7i |
| 6 |
| an |
| n |
解答:解:(Ⅰ)当n≥2时,
有an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=a1+b1+b2+…+bn-1(2分)
=1+
=
-
+1.(3分)
又因为a1=1也满足上式,
所以数列{an}的通项为an=
-
+1.(4分)
(Ⅱ)由题设知:bn>0,对任意的n∈N*有bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1,
于是又bn+3bn+6=1,故bn+6=bn(5分)
∴b6n-5=b1=1,b6n-4=b2=2,b6n-3=b3=2,b6n-2=b4=1,b6n-1=b5=
,b6n=
(ⅰ)cn+1-cn=a6n+5-a6n-1=b6n-1+b6n+b6n+1+b6n+2+b6n+3+b6n+4=1+2+2+1+
+
=7(n≥1),
所以数列{cn}为等差数列.(7分)
(ⅱ)设dn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6}),
所以dn+1-dn=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0)
所以数列{a6n+i}均为以7为公差的等差数列.(9分)
设fk=
=
=
=
+
,
(其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数),
当ai=
时,对任意的n=6k+i有
=
;(10分)
由ai=
,i∈{1,2,3,4,5,6}知a1=
,
,
,-
,-
,
;
此时
重复出现无数次.
当ai≠
时,fk+1-fk=
-
=(ai-
)(
-
)=(ai-
)(
)
①若ai>
,则对任意的k∈N有fk+1<fk,所以数列{
}为单调减数列;
②若ai<
,则对任意的k∈N有fk+1>fk,所以数列{
}为单调增数列;
(12分){
}(i=1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,
即数列{
}中任意一项的值最多出现六次.
综上所述:当a1∈{
,
,
,-
,-
}=B时,数列{
}中必有某数重复出现无数次.
当a1∉B时,数列{
}中任意一项的值均未在该数列中重复出现无数次.(14分)
有an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=a1+b1+b2+…+bn-1(2分)
=1+
| (n-1)×n |
| 2 |
| n2 |
| 2 |
| n |
| 2 |
又因为a1=1也满足上式,
所以数列{an}的通项为an=
| n2 |
| 2 |
| n |
| 2 |
(Ⅱ)由题设知:bn>0,对任意的n∈N*有bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1,
于是又bn+3bn+6=1,故bn+6=bn(5分)
∴b6n-5=b1=1,b6n-4=b2=2,b6n-3=b3=2,b6n-2=b4=1,b6n-1=b5=
| 1 |
| 2 |
| 1 |
| 2 |
(ⅰ)cn+1-cn=a6n+5-a6n-1=b6n-1+b6n+b6n+1+b6n+2+b6n+3+b6n+4=1+2+2+1+
| 1 |
| 2 |
| 1 |
| 2 |
所以数列{cn}为等差数列.(7分)
(ⅱ)设dn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6}),
所以dn+1-dn=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0)
所以数列{a6n+i}均为以7为公差的等差数列.(9分)
设fk=
| a6k+i |
| 6k+i |
| ai+7k |
| i+6k |
| ||||
| i+6k |
| 7 |
| 6 |
ai-
| ||
| i+6k |
(其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数),
当ai=
| 7i |
| 6 |
| an |
| n |
| 7 |
| 6 |
由ai=
| 7i |
| 6 |
| 7 |
| 6 |
| 4 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
此时
| 7 |
| 6 |
当ai≠
| 7i |
| 6 |
ai-
| ||
| 6(k+1)+i |
ai-
| ||
| 6k+i |
| 7i |
| 6 |
| 1 |
| 6(k+1)+i |
| 1 |
| 6k+i |
| 7i |
| 6 |
| -6 |
| [6(k+1)+i](6k+i) |
①若ai>
| 7i |
| 6 |
| a6k+i |
| 6k+i |
②若ai<
| 7i |
| 6 |
| a6k+i |
| 6k+i |
(12分){
| a6k+i |
| 6k+i |
即数列{
| an |
| n |
综上所述:当a1∈{
| 7 |
| 6 |
| 4 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| an |
| n |
当a1∉B时,数列{
| an |
| n |
点评:本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,解题时分类讨论思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目