题目内容

4.将曲线的参数方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)化为普通方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

分析 曲线的参数方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),消去参数t,可得普通方程.

解答 解:曲线的参数方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),消去参数t,可得普通方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.
故答案为:$\sqrt{3}$x-y-3$\sqrt{3}$=0.

点评 本题考查参数方程化为标准方程,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网