题目内容
【题目】定义域为
的单调函数
满足![]()
,且
,
(1)求
,
;
(2)判断函数
的奇偶性,并证明;
(3)若对于任意
都有
成立,求实数
的取值范围.
【答案】(1)
,
;(2)奇函数;(3)![]()
【解析】
(1)取
代入函数满足的等式,整理可得
.再根据
,结合定义和
,算出
;
(2)以
取代
,代入函数满足的等式,可得
,由此可得
是奇函数;
(3)根据函数是单调函数且
,得
是定义域在
上的增函数.再结合函数为奇函数,将题中不等式转化为
在
上恒成立,最后采用变量分离的方法结合换元法求函数的最大值,可算出
的取值范围.
解:(1)取
,得
,
即
,
,
![]()
结合
,得
,可得
;
(2)取
,得![]()
移项得![]()
函数
是奇函数;
(3)
是奇函数,且
在
上恒成立,
在
上恒成立,
又
是定义域在
的单调函数,且
,
是定义域在
上的增函数.
在
上恒成立.
![]()
在
上恒成立.
令
,
由于
,![]()
.
.
.
则实数
的取值范围为
.
练习册系列答案
相关题目
【题目】某电视台为宣传本省,随机对本省内15~65岁的人群抽取了
人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第1组 |
|
|
|
第2组 |
| 18 |
|
第3组 |
|
|
|
第4组 |
|
|
|
第5组 |
|
|
|
![]()
(1)分别求出
的值;
(2)从第2、3、4组回答正确的人中用分层抽样的方法抽取6人,求第2、3、4组每组各抽取多少人?
(3)指出直方图中,这组数据的中位数是多少(取整数值)?