题目内容
已知函数f(x)=x2+a,(x∈R).
(1)对?x1,x2∈R比较
[f(x1)+f(x2)]与f(
)的大小;
(2)若x∈[-1,1]时,有|f(x)|≤1,试求实数a的取值范围.
(1)对?x1,x2∈R比较
| 1 |
| 2 |
| x1+x2 |
| 2 |
(2)若x∈[-1,1]时,有|f(x)|≤1,试求实数a的取值范围.
(1)对?x1,x2∈R,由
[f(x1)+f(x2)]-f(
)=
(x1-x2)2≥0,得
[f(x1)+f(x2)]≥f(
).
(2)由于|f(x)|≤1,等价于-1≤f(x)≤1,等价于-1≤x2+a≤1,等价于-x2-1≤a≤-x2+1在[-1,1]上恒成立,
所以,只须
,求得-1≤a≤0,所以所求实数a的取值范围是[-1,0].
| 1 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| x1+x2 |
| 2 |
(2)由于|f(x)|≤1,等价于-1≤f(x)≤1,等价于-1≤x2+a≤1,等价于-x2-1≤a≤-x2+1在[-1,1]上恒成立,
所以,只须
|
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|