题目内容
二项式的展开式中的常数项为__________.
60
如图,已知双曲线:的右顶点为为坐标原点,以为圆心的圆与双曲线的某渐近线交于两点.若且,则双曲线的离心率为( )
A. B. C. D.
圆的圆心坐标及半径分别是
A. B. C. D.
已知i为虚数单位,则复数( )
春节期间,某单位要安排位行政领导从初一至初六值班,每天安排人,每人值班两天,则共有多少种安排方案?( )
. . . ..
某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.
(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(2)记游戏A、B被闯关成功的总人数为X,求X的分布列和期望.
在△ABC中,已知sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则该三角形的面积为
A.1 B.2 C. D.
已知圆C:x2+y2-2x-10y+13=0及点,
(Ⅰ)若点P(2m+4,3m+3)在圆C上,求PQ的斜率;
(Ⅱ)若点M是圆C上任意一点,求|MQ|的最大值、最小值;
(Ⅲ)若N(a,b)满足关系:a2+b2-2a-10b+13=0,求出t =的最大值.
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求;
(Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?