题目内容
椭圆的焦点为,点为椭圆上的动点,当为钝角时,求点的横坐标的取值范围。
∵,,解得:。
(本小题满分13分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的
左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭
圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点
分别 为和
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?
若存在,求的值;若不存在,请说明理由.
(本小题满分12分)
给定椭圆:,称圆心在原点,半径为的圆是
椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距
离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭
圆都只有一个交点,且分别交其“准圆”于点;
(1)当为“准圆”与轴正半轴的交点时,求的方程.
(2)求证:为定值.