题目内容
(1)已知函数f(x)=sin(
x+
),求函数在区间[-2π,2π]上的单调增区间;
(2)计算:tan70°cos10°(
tan20°-1).
| 1 |
| 2 |
| π |
| 4 |
(2)计算:tan70°cos10°(
| 3 |
(1)由-
+2kπ≤
x+
≤
+2kπ(k∈Z)得-
+4kπ≤x≤
+4kπ(k∈Z),
当k=0时,得-
≤x≤
,[-
,
]?[-2π,2π],且仅当k=0时符合题意,
∴函数f(x)=sin(
x+
)在区间[-2π,2π]上的单调增区间是[-
,
].
(2)tan70°cos10°(
tan20°-1)=
•cos10°•
=
•cos10°•
=-
•
=-
•
=-1.
| π |
| 2 |
| 1 |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
当k=0时,得-
| 3π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
∴函数f(x)=sin(
| 1 |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 2 |
(2)tan70°cos10°(
| 3 |
| sin70° |
| cos70° |
| ||
| cos20° |
| sin70° |
| cos70° |
| -2sin10° |
| cos20° |
| sin70° |
| cos70° |
| sin20° |
| cos20° |
| cos20° |
| sin20° |
| sin20° |
| cos20° |
练习册系列答案
相关题目