题目内容
(08年永定一中二模文)(14分)
已知函数
的图象按向量
平移后得到函数y=
的图象,数列
满足
(n≥2,nÎN*).
(1)若
,数列
满足
,求证:数列
是等差数列;
(2)若
,数列
满足
的前
项和.
①求
; ②数列
中是否存在最大项与最小项,若存在,求出最大项与最小项,若不存在,说明理由.
解析:
,则
(n≥2,nÎN*).
(1)
,
,∴
(n≥2,nÎN*).∴数列
是等差数列.………………………………………………6分
(2)①由(1)知,数列
为等差数列,首项
,
公差为1,则
.
由![]()
![]()
![]()
![]()
…………………………………………………………………………10分
②构造函数![]()
在区间
、![]()
![]()
![]()
……………………………………………………14分
练习册系列答案
相关题目