题目内容
在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=
a.
(1)求cosA的值;
(2)cos(2A+
)的值.
(3)若已知向量
=(
cos
,cos
),
=(sin
,cos
).若
•
=
,求sin(
-x)的值.
| 3 |
(1)求cosA的值;
(2)cos(2A+
| π |
| 4 |
(3)若已知向量
| m |
| 3 |
| x |
| 4 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
2+
| ||
| 4 |
| 7π |
| 6 |
分析:(1)直接利用已知条件以及余弦定理,求cosA的值;
(2)利用(1)的结果,求出sinA,通过二倍角公式求出cos2A,sin2A,利用两角和的余弦函数直接求解cos(2A+
)的值.
(3)通过向量
=(
cos
,cos
),
=(sin
,cos
).利用
•
=
,求出
+
的正弦函数值,利用诱导公式以及二倍角的余弦函数直接求解sin(
-x)的值.
(2)利用(1)的结果,求出sinA,通过二倍角公式求出cos2A,sin2A,利用两角和的余弦函数直接求解cos(2A+
| π |
| 4 |
(3)通过向量
| m |
| 3 |
| x |
| 4 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
2+
| ||
| 4 |
| x |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
解答:解:(1)由B=C,2b=
a可得c=b=
a,
所以cosA=
=
=
.
(2)因为cosA=
,a∈(0,π),所以sinA=
=
,
cos2A=2cos2A-1=-
,故sin2A=2sinAcosA=
,
∴cos(2A+
)=cos2Acos
-sin2Asin
=-
×
-
×
=-
,
(3)向量
=(
cos
,cos
),
=(sin
,cos
).
•
=
,(
cos
,cos
)•(sin
,cos
)=
.
可得sin(
+
)=
,
sin(
-x)=-cos2(
+
)=2sin2(
+
)-1=
.
| 3 |
| ||
| 2 |
所以cosA=
| b2+c2-a2 |
| 2bc |
| ||||||||
2×
|
| 1 |
| 3 |
(2)因为cosA=
| 1 |
| 3 |
| 1-cos2A |
2
| ||
| 3 |
cos2A=2cos2A-1=-
| 7 |
| 9 |
4
| ||
| 9 |
∴cos(2A+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 7 |
| 9 |
| ||
| 2 |
4
| ||
| 9 |
| ||
| 2 |
8+7
| ||
| 18 |
(3)向量
| m |
| 3 |
| x |
| 4 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
2+
| ||
| 4 |
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
2+
| ||
| 4 |
可得sin(
| x |
| 2 |
| π |
| 6 |
| ||
| 4 |
sin(
| 7π |
| 6 |
| x |
| 2 |
| π |
| 6 |
| x |
| 2 |
| π |
| 6 |
| 3 |
| 4 |
点评:本题考查余弦定理,同角三角函数的基本关系式,二倍角公式的应用,考查计算能力与转化思想的应用.
练习册系列答案
相关题目