题目内容
已知向量
=(cosx-3,sinx),
=(cosx,sinx-3),f(x)=
•
(1)若x∈[2π,3π],求函数f(x)的单调递增区间;
(2)若x∈(-
,
),且f(x)=-1,求tan2x的值.
| a |
| b |
| a |
| b |
(1)若x∈[2π,3π],求函数f(x)的单调递增区间;
(2)若x∈(-
| π |
| 4 |
| π |
| 4 |
(1)f(x)=
•
=cosx(cosx-3)+sinx(sinx-3)=1-3
sin(x+
),由 2kπ-
≤x+
≤2kπ+
,k∈z,
可得 2kπ-
≤x≤2kπ+
,再由 2π≤x≤3π 可得,2π≤x≤
,
故单调递增区间是[2π,
].
(2)由f(x)=-1 可得 1-3
sin(x+
)=-1,可得sin(x+
)=
,∵x∈(-
,
),
∴0<x+
<
,∴cos(x+
)=
,tan2x=
=
=
=
=
.
| a |
| b |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
可得 2kπ-
| 3π |
| 4 |
| π |
| 4 |
| 9π |
| 4 |
故单调递增区间是[2π,
| 9π |
| 4 |
(2)由f(x)=-1 可得 1-3
| 2 |
| π |
| 4 |
| π |
| 4 |
| ||
| 3 |
| π |
| 4 |
| π |
| 4 |
∴0<x+
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| ||
| 3 |
| sin2x |
| cos2x |
-cos2(x+
| ||
sin2(x+
|
-[1-2sin2(x+
| ||||
2sin(x+
|
=
-[1-2×
| ||||||||
2×
|
-5
| ||
| 28 |
练习册系列答案
相关题目