题目内容
已知数列{an}的首项为a1=
,an+1=
(n∈Z*),则an=
| 2 |
| 3 |
| 2an |
| an+2 |
an=
| 2 |
| n+2 |
an=
.| 2 |
| n+2 |
分析:根据数列的递推公式,通过取倒数得到一个新数列,利用新数列的特点求数列的通项公式.
解答:解:由an+1=
(n∈Z*),两边同时取倒数,得到
=
=
+
,即
-
=
.
所以数列{
}是以
=
为首项,d=
为公差的等差数列.
所以
=
+
(n-1)=
,即an=
.
故答案为:an=
.
| 2an |
| an+2 |
| 1 |
| an+1 |
| 2+an |
| 2an |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
所以数列{
| 1 |
| an |
| 1 |
| a1 |
| 3 |
| 2 |
| 1 |
| 2 |
所以
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| 2 |
| n+2 |
| 2 |
| 2 |
| n+2 |
故答案为:an=
| 2 |
| n+2 |
点评:本题主要考查数列的通项公式,利用递推公式通过取倒数,将数列转化为一个新的等差数列,是解决本题的关键.
练习册系列答案
相关题目