题目内容

已知f(x)=sinx-3cosx,则f(x)的最大值为
 
分析:利用asinθ+bcosθ=
a2+b2
sin(θ+φ),其中tanφ=
b
a
,进行求解,再根据三角函数sin(θ+φ)的值域求出f(x)的最大值.
解答:解:f(x)=sinx-3cosx=
10
sin(x+φ),其中tanφ=-3
∴f(x)=sinx-3cosx,则f(x)的最大值为
10

故答案为
10
点评:本题主要考查了函数的最值及其几何意义,以及配角公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网