题目内容
已知函数
,函数
的最小值为
.
(1)求
的解析式;
(2)是否存在实数
同时满足下列两个条件:①
;②当
的定义域为
时,值域为
?若存在,求出
的值;若不存在,请说明理由.
(1)
(2) 不存在满足题中条件的
的值
解析:
(1)由
,知
,令![]()
............1分
记
,则
的对称轴为
,故有:
①当
时,
的最小值![]()
②当
时,
的最小值![]()
③当
时,
的最小值![]()
综述,
............7分
(2)当
时,
.故
时,
在
上为减函数.
所以
在
上的值域为
. ............9分
由题,则有
,两式相减得
,又![]()
所以
,这与
矛盾.故不存在满足题中条件的
的值.
............13分
练习册系列答案
相关题目