题目内容
已知向量
=(cosx,sinx)
.
(Ⅰ)若f(x)=
•
,求f(
);
(Ⅱ)g(x)=f(x)+2sinxcosx,求g(x)的周期和最小值.
| a |
|
(Ⅰ)若f(x)=
| a |
| b |
| π |
| 8 |
(Ⅱ)g(x)=f(x)+2sinxcosx,求g(x)的周期和最小值.
(Ⅰ)f(x)=
•
=cos2x-sin2x=cos2x
f(
)=cos
=
(Ⅱ)g(x)=f(x)+2sinxcosx=cos2x+sin2x=
sin(2x+
)
g(x)的周期T=
=π
当sin(2x+
)=-1时,函数g(x)有最小值-
| a |
| b |
f(
| π |
| 8 |
| π |
| 4 |
| ||
| 2 |
(Ⅱ)g(x)=f(x)+2sinxcosx=cos2x+sin2x=
| 2 |
| π |
| 4 |
g(x)的周期T=
| 2π |
| 2 |
当sin(2x+
| π |
| 4 |
| 2 |
练习册系列答案
相关题目