题目内容

已知△ABC的三内角ABC满足A+C=2B,设x=cosf(x)=cosB().

(1)试求函数f(x)的解析式及其定义域;

(2)判断其单调性,并加以证明;

(3)求这个函数的值域.

(1), 定义域为()∪(,1] (2) f(x)在(,)和(,1上都是减函数,(3) f(x)的值域为(-∞,-)∪[2,+∞


解析:

(1)∵A+C=2B,∴B=60°,A+C=120°

∵0°≤||<60°,∴x=cos∈(,1

又4x2-3≠0,∴x,∴定义域为()∪(,1].

(2)设x1x2

f(x2)-f(x1)==

x1x2∈(),则4x12-3<0,4x22-3<0,4x1x2+3>0,x1x2<0,∴f(x2)-f(x1)<0

f(x2)<f(x1),若x1x2∈(,1],则4x12-3>0.

4x22-3>0,4x1x2+3>0,x1x2<0,∴f(x2)-f(x1)<0.

f(x2)<f(x1),∴f(x)在(,)和(,1上都是减函数.

(3)由(2)知,f(x)<f()=-f(x)≥f(1)=2.

f(x)的值域为(-∞,-)∪[2,+∞.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网