题目内容
已知函数f(x)=x3+ax2+bx+3的单调递减区间为(1)求f(x)的解析式;
(2)若t∈R,试讨论关于x的方程f(x)=2x2+8x+t的实数根的个数.
【答案】分析:(1)由题设得f'(x)=0的根为
或x=1,由此求得a=b=-1;
(2)令g(x)=f(x)-(2x2+8x+t),利用导数求出函数g(x)的极大值与极小值,对参数t分类讨论,即可得到函数的零点个数亦即方程的根的个数.
解答:解:(1)f'(x)=3x2+2ax+b
由题设得f'(x)=0的根为
或x=1
由此求得a=b=-1
故f(x)=x3-x2-x+3
(2)g(x)=f(x)-(2x2+8x+t)=x3-3x2-9x+3-t
令g'(x)=3x2-6x-9=0,得x=-1或x=3
g(x)极大值=g(-1)=8-t,g(x)极小值=g(3)=-24-t
∴当8-t<0,即t>8时,原方程有一个实数根;
当8-t=0,即t=8时,原方程有两个实数根;
即-24<t<8时,原方程有三个实数根;
当-24-t=0,即t=-24时,原方程有两个实数根;
当-24-t>0,即t<-24时,原方程有一个实数根.
综上,当t=-24或t=8时,原方程有两个实数根;
当t<-24或t>8时,原方程有两个实数根;
当-24<t<8时,原方程有三个实数根.
点评:考查利用导数研究函数的单调性和极值,以及一元二次方程根的存在性的判定,体现了数形结合的思想方法,属中档题.
(2)令g(x)=f(x)-(2x2+8x+t),利用导数求出函数g(x)的极大值与极小值,对参数t分类讨论,即可得到函数的零点个数亦即方程的根的个数.
解答:解:(1)f'(x)=3x2+2ax+b
由题设得f'(x)=0的根为
由此求得a=b=-1
故f(x)=x3-x2-x+3
(2)g(x)=f(x)-(2x2+8x+t)=x3-3x2-9x+3-t
令g'(x)=3x2-6x-9=0,得x=-1或x=3
| x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
| g'(x) | + | - | + | ||
| g(x) | 增 | 极大值 | 减 | 极小值 | 增 |
∴当8-t<0,即t>8时,原方程有一个实数根;
当8-t=0,即t=8时,原方程有两个实数根;
当-24-t=0,即t=-24时,原方程有两个实数根;
当-24-t>0,即t<-24时,原方程有一个实数根.
综上,当t=-24或t=8时,原方程有两个实数根;
当t<-24或t>8时,原方程有两个实数根;
当-24<t<8时,原方程有三个实数根.
点评:考查利用导数研究函数的单调性和极值,以及一元二次方程根的存在性的判定,体现了数形结合的思想方法,属中档题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|