搜索
题目内容
设函数
在区间(
)的导函数
,
在区间(
)的导函数
,若在区间(
)上
恒成立,则称函数
在区间(
)为凸函数,已知
若当实数
满足
时,函数
在
上为凸函数,则
最大值 ( )
A.1
B.2
C.3
D.4
试题答案
相关练习册答案
D
试题分析:
,
,函数
在
上为凸函数,
对于
恒成立,
设函数
与x轴交点横坐标为
,
的最大值为
最大值为4
点评:本题根据题目中凸函数的定义可知对于函数
满足性质
对于
恒成立,进而结合二次函数性质求得
最大值
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设
表示P点行程,
表PA的长,求
关于
的函数关系式。
若
,使
成立,则实数
的取值范围为( )
A.
B.
C.
D.
若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
为自然对数的底数).
(1)求
的极值;
(2)函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知函数
.若数列
满足
且
,则实数
的取值范围是
A.
B.
C.
D.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式
;写出图2表示的种植成本与时间的函数关系式
.
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(注:市场售价和种植成本的单位:元/百千克,时间单位:天)
已知
为定义在
上的可导函数,且
对于
恒成立,且
为自然对数的底,则( )
A.
B.
C.
D.
有三张正面分别写有数字—2,—1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值。放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求使分式
有意义的(x,y)出现的概率;
(3)化简分式
;并求使分式的值为整数的(x,y)出现的概率。
下列各图中,可表示函数y=f(x)的图象的只可能是( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案