ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌâÖУ¬ÆäÖÐÕæÃüÌâµÄ¸öÊýÓУ¨¡¡¡¡£©¸ö
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê(
£¬
)£¬Ôòf£¨sin¦È£©£¾f£¨cos¦È£©
¢Ú¡÷ABCΪÈñ½ÇÈý½ÇÐÎÊÇtanA+tanB+tanC£¾0µÄ³äÒªÌõ¼þ
¢ÛÈô|
+
|=|
-
|£¬
•
=0
¢Üº¯Êýf(x)=
£¬(-
£¬-
)ÊÇÆä¶Ô³ÆÖÐÐÄ
¢ÝÃüÌâP£º?x¡ÊR£¬mx2+1¡Ü0£¬ÃüÌâq£º?x¡ÊR£¬x2+mx+1£¾0£¬Èôp¡ÅqΪ¼ÙÃüÌ⣬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇm£¾2£®
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê(
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
¢Ú¡÷ABCΪÈñ½ÇÈý½ÇÐÎÊÇtanA+tanB+tanC£¾0µÄ³äÒªÌõ¼þ
¢ÛÈô|
| a |
| b |
| a |
| b |
| a |
| b |
¢Üº¯Êýf(x)=
| x-1 |
| 2x+1 |
| 1 |
| 2 |
| 1 |
| 2 |
¢ÝÃüÌâP£º?x¡ÊR£¬mx2+1¡Ü0£¬ÃüÌâq£º?x¡ÊR£¬x2+mx+1£¾0£¬Èôp¡ÅqΪ¼ÙÃüÌ⣬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇm£¾2£®
·ÖÎö£º¸ù¾Ýº¯ÊýÆæÅ¼ÐÔÓëµ¥µ÷ÐÔµÄ×ÛºÏÓ¦Ó㬿ÉÒÔÅжϢٵÄÕæ¼Ù£»ÓÉÈý½ÇÐÎÄڽǵÄÈý½Çº¯ÊýµÄÐÔÖÊ£¬¿ÉÅжϢڵÄÕæ¼Ù£»Í¬Æ½ÃæÏòÁ¿µÄÐÔÖÊ¿ÉÅжϢ۵ÄÕæ¼Ù£»Óɺ¯ÊýµÄ¶Ô³ÆÐÔÄÜÅжϢܵÄÕæ¼Ù£»Óɸ´ºÏÃüÌâµÄÕæ¼ÙÅжÏÄܵõ½¢ÝµÄÕæ¼Ù£®
½â´ð£º½â£º¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬
Ôòº¯ÊýÔÚ[0£¬1]ÉÏΪ¼õº¯Êý£¬
Èô¦È¡Ê(
£¬
)£¬Ôò0£¼cos¦È£¼sin¦È£¼1£¬
Ôòf£¨sin¦È£©£¼f£¨cos¦È£©£¬¹Ê¢ÙΪ¼ÙÃüÌ⣻
¢Ú¡ßtanA+tanB=tan£¨A+B£©£¨1-tanAtanB£©
¡àtanA+tanB+tanC=tan£¨A+B£©£¨1-tanAtanB£©+tanC=tanC£¨tanAtanB-1£©+tanC=tanAtanBtanC£¾0£¬
¡àA£¬B£¬CÊÇ¡÷ABCµÄÄڽǣ¬¹ÊÄڽǶ¼ÊÇÈñ½Ç£®
·´Ö®£¬µ±¡÷ABCµÄÄڽǶ¼ÊÇÈñ½Çʱ£¬tanA+tanB+tanC£¾0£®
¹Ê¡÷ABCΪÈñ½ÇÈý½ÇÐÎÊÇtanA+tanB+tanC£¾0µÄ³äÒªÌõ¼þ£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
¢Û¡ß|
+
|=|
-
|£¬¡à
2+
•
+
2=
2-
•
+
2£¬
¡à
•
=0£¬¹Ê¢ÛÕýÈ·£»
¢ÜÉèf£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨a£¬b£©£¬ÓÐf£¨x£©+f£¨2a-x£©=2b
f£¨x£©+f£¨2a-x£©=
+
=£¨4x2-8ax+2a+2£©¡Â£¨4x2-8ax-4a-1£©
=2b£¬
¡à2a+2+4a+1=0£¬2b=1
a=-
£¬b=
£¬
¡àf£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨-
£¬
£©£¬¹Ê¢Ü²»ÕýÈ·£»
¢Ý¡ßp¡ÅqΪ¼ÙÃüÌ⣬¡àp£¬q¾ùΪ¼ÙÃüÌ⣬
¼´©Vp£ºx¡ÊR£¬mx2+1£¾0ºÍ©Vq£ºx¡ÊR£¬x2+mx+1¡Ü0¾ùÎªÕæÃüÌ⣬
ÓÉ©Vp£ºx¡ÊR£¬mx2+1£¾0ÎªÕæÃüÌ⣬µÃµ½m¡Ý0£»
ÓÉ©Vq£ºx¡ÊR£¬x2+mx+1¡Ü0ÎªÕæÃüÌ⣬µÃµ½¡÷=m2-4¡Ý0£¬½âµÃm¡Ý2£¬»òm¡Ü-2£®
×ÛÉÏ£¬m¡Ý2£®¹Ê¢ÝÕýÈ·£®
¹ÊÑ¡C£®
Ôòº¯ÊýÔÚ[0£¬1]ÉÏΪ¼õº¯Êý£¬
Èô¦È¡Ê(
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
Ôòf£¨sin¦È£©£¼f£¨cos¦È£©£¬¹Ê¢ÙΪ¼ÙÃüÌ⣻
¢Ú¡ßtanA+tanB=tan£¨A+B£©£¨1-tanAtanB£©
¡àtanA+tanB+tanC=tan£¨A+B£©£¨1-tanAtanB£©+tanC=tanC£¨tanAtanB-1£©+tanC=tanAtanBtanC£¾0£¬
¡àA£¬B£¬CÊÇ¡÷ABCµÄÄڽǣ¬¹ÊÄڽǶ¼ÊÇÈñ½Ç£®
·´Ö®£¬µ±¡÷ABCµÄÄڽǶ¼ÊÇÈñ½Çʱ£¬tanA+tanB+tanC£¾0£®
¹Ê¡÷ABCΪÈñ½ÇÈý½ÇÐÎÊÇtanA+tanB+tanC£¾0µÄ³äÒªÌõ¼þ£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
¢Û¡ß|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
¡à
| a |
| b |
¢ÜÉèf£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨a£¬b£©£¬ÓÐf£¨x£©+f£¨2a-x£©=2b
f£¨x£©+f£¨2a-x£©=
| x-1 |
| 2x+1 |
| 2a-x-1 |
| 4a-2x+1 |
=£¨4x2-8ax+2a+2£©¡Â£¨4x2-8ax-4a-1£©
=2b£¬
¡à2a+2+4a+1=0£¬2b=1
a=-
| 1 |
| 2 |
| 1 |
| 2 |
¡àf£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨-
| 1 |
| 2 |
| 1 |
| 2 |
¢Ý¡ßp¡ÅqΪ¼ÙÃüÌ⣬¡àp£¬q¾ùΪ¼ÙÃüÌ⣬
¼´©Vp£ºx¡ÊR£¬mx2+1£¾0ºÍ©Vq£ºx¡ÊR£¬x2+mx+1¡Ü0¾ùÎªÕæÃüÌ⣬
ÓÉ©Vp£ºx¡ÊR£¬mx2+1£¾0ÎªÕæÃüÌ⣬µÃµ½m¡Ý0£»
ÓÉ©Vq£ºx¡ÊR£¬x2+mx+1¡Ü0ÎªÕæÃüÌ⣬µÃµ½¡÷=m2-4¡Ý0£¬½âµÃm¡Ý2£¬»òm¡Ü-2£®
×ÛÉÏ£¬m¡Ý2£®¹Ê¢ÝÕýÈ·£®
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬ÊÇ»ù´¡Ì⣮½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýµÄÐÔÖÊ¡¢Èý½ÇÐÎÄÚ½ÇÈý½Çº¯ÊýµÄÐÔÖÊ¡¢Æ½ÃæÏòÁ¿µÈ֪ʶµãµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿