题目内容
20.在数列{an}中,a1=2,an+1=3an,(n∈N*),则a4=54.分析 推导出数列{an}是首项为2,公比为3的等比数列,由此能求出a4.
解答 解:∵数列{an}中,a1=2,an+1=3an,(n∈N*),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=3,
∴数列{an}是首项为2,公比为3的等比数列,
∴a4=a1q3=2×33=54.
故答案为:54.
点评 本题考查等比数列的第4项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目
11.已知实数x,y满足条件$\left\{\begin{array}{l}{x≤2}\\{x+y≥2}\\{2x-y≥2}\end{array}\right.$,则$\frac{y+x}{y+2x}$的取值范围是( )
| A. | [0,1] | B. | [$\frac{1}{3}$,1] | C. | [$\frac{1}{2}$,$\frac{2}{3}$] | D. | [$\frac{1}{2}$,1] |
8.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
附表:
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616参照附表,得到的正确结论是( )
| 非一线 | 一线 | 总计 | |
| 愿生 | 45 | 20 | 65 |
| 不愿生 | 13 | 22 | 35 |
| 总计 | 58 | 42 | 100 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关” | |
| C. | 有99%以上的把握认为“生育意愿与城市级别有关” | |
| D. | 有99%以上的把握认为“生育意愿与城市级别无关” |
5.从1、2、3、4、5、6中任三个数,则所取的三个数按一定的顺序可排成等差数列的概率为( )
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{20}$ |
9.四个变量y1、y2、y3、y4随变量x变化的函数值如表:
关于x呈单调增加的指数型函数和线性函数变化的变量分别是( )
| x | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
| y1 | 5 | 130 | 505 | 1130 | 2005 | 3130 | 4505 |
| y2 | 5 | 94.478 | 1785.2 | 33733 | 6.37×105 | 1.2×107 | 2.28×108 |
| y3 | 5 | 30 | 55 | 80 | 105 | 130 | 155 |
| y4 | 5 | 2.3107 | 1.4295 | 1.1407 | 1.0461 | 1.0151 | 1.005 |
| A. | y2、y1 | B. | y2、y3 | C. | y4、y3 | D. | y1、y3 |