题目内容
已知数列{xn}满足xn+1-xn=(-
)n,n∈N*,且x1=1.设an=
xn-
,且T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n.
(Ⅰ)求xn的表达式;
(Ⅱ)求T2n;
(Ⅲ)若Qn=1-
(n∈N*),试比较9T2n与Qn的大小,并说明理由
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
(Ⅰ)求xn的表达式;
(Ⅱ)求T2n;
(Ⅲ)若Qn=1-
| 3n+1 |
| (2n+1)2 |
(I)∵xn+1-xn=(-
)n,
∴xn=x1+(x2-x1)+(x3-x2)++(xn-xn-1)
=1+(-
)+(-
)2++(-
)n-1
=
=
+
(-
)n-1(4分)
当n=1时上式也成立,∴xn=
+
(-
)n+1(n∈N*).(5分)
(Ⅱ)an=
xn-
=
(-
)n-1=(-
)n+1.
∵T2n=a1+2a2+3a3++(2n-1)a2n-1+2na2n=(-
)2+2(-
)3+3(-
)4++(2n-1)(-
)2n+2n(-
)2n+1①
∴-
T2n=(
)3+2(-
)4+3(-
)3++(2n-1)(-
)2n+1+2n(-
)2n+2②
①-②,得
T2n=(-
)2+(-
)3++(-
)2n+1-2n(-
)2n+2(8分)
∴
T2n=
-2n(-
)2n+2=
-
(-
)2n-
(-
)2n.T2n=
-
(-
)2n-
(-
)2n=
(1-
).(10分)
(Ⅲ)由(Ⅱ)可得9T2n=1-
.
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Qn;(11分)
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;(12分)
当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn2++Cnn)2>(2n+1)2.∴9T2n>Qn.
综上所述,当n=1,2时,9T2n<Qn;当n≥3时,9T2n>Qn.(14分)
| 1 |
| 2 |
∴xn=x1+(x2-x1)+(x3-x2)++(xn-xn-1)
=1+(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
1-(-
| ||
1-(-
|
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
当n=1时上式也成立,∴xn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
(Ⅱ)an=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
∵T2n=a1+2a2+3a3++(2n-1)a2n-1+2na2n=(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 3 |
| 2 |
| ||||
1+
|
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 2 |
| n |
| 3 |
| 1 |
| 2 |
| 1 |
| 9 |
| 3n+1 |
| 22n |
(Ⅲ)由(Ⅱ)可得9T2n=1-
| 3n+1 |
| 22n |
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Qn;(11分)
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;(12分)
当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn2++Cnn)2>(2n+1)2.∴9T2n>Qn.
综上所述,当n=1,2时,9T2n<Qn;当n≥3时,9T2n>Qn.(14分)
练习册系列答案
相关题目