题目内容
设函数
(
),其中
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求函数
的极大值和极小值.
(Ⅰ)当
时,曲线
在点
处的切线方程为
;(Ⅱ)函数
在
处取得极小值
,在
处取得极大值
.
解析试题分析:(Ⅰ)把
代入
,得
,结合已知条件即可得切点的坐标为
.再对
求导,即可求得
,即可得所求切线的斜率,最后利用直线方程的点斜式,即可得所求切线的方程;(Ⅱ)首先对
求导,得
.令
,解得
或
.
,列出当
变化时,
,
随
的变化情况表格,即可求得当
时,函数
的极大值和极小值.
试题解析:(Ⅰ)当
时,
,得
, 1分
且
,
. 3分
所以,曲线
在点
处的切线方程是
, 5分
整理得
. 6分
(Ⅱ)解:
,
.
令
,解得
或
. 8分
若
,当
变化时,
的正负如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
模拟试卷汇编优化系列答案
学期总复习期末复习寒假作业系列答案
赢在课堂中考先锋总复习卷系列答案
中考风向标全国中考试题精析系列答案
宏翔教育中考金牌中考总复习系列答案
赢在中考3年中考2年模拟系列答案
宏翔文化中考亮剑系列答案
5年中考江苏13大市中考真题历年回顾精选28套卷系列答案
薪火文化假期百分百系列答案
定位中考三步定位核心大考卷系列答案