题目内容
已知向量
,
满足|
|=2,|
|=1,|
+
|=2
(1)求
•
的值
(2)求|
-
|的值.
| a |
| b |
| a |
| b |
| a |
| b |
(1)求
| a |
| b |
(2)求|
| a |
| b |
分析:(1)因为 |
+
|2=
2+2
•
+
2=4,|
|=2,|
|=1,即 4+2
•
+1=4,故可求得
•
的值.
(2)因为|
-
|2=
2-2
•
+
2=6,把 |
|=2,|
|=1,
•
=
代入运算,求出|
-
|的值.
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(2)因为|
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
解答:解:(1)因为 |
+
|2=
2+2
•
+
2=4,|
|=2,|
|=1,
∴4+2
•
+1=4,所以
•
=-
.
(2)因为|
-
|2=
2-2
•
+
2=6,所以|
-
|=
.
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
∴4+2
| a |
| b |
| a |
| b |
| 1 |
| 2 |
(2)因为|
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
| 6 |
点评:本题主要考查两个向量的数量积公式的应用,求向量的模的方法,求得
•
=-
,是解题的关键.
| a |
| b |
| 1 |
| 2 |
练习册系列答案
相关题目
已知向量a,b满足|a|=2,|b|=3,|2a+b|=
,则a与b的夹角为( )
| 37 |
| A、30° | B、45° |
| C、60° | D、90° |