题目内容
设数列{an} 的前n项和为Sn ,已知S1=1,
=
(c为常数,c≠1,n∈N*),且a1,a2,a3成等差数列.
(1)求c的值;
(2)求数列{an} 的通项公式;
(3)若数列{bn} 是首项为1,公比为c的等比数列,记An=a1b1+a2b2+…+anbn,Bn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*.证明:A2n+3B2n=
(1-4n).
| Sn+1 |
| Sn |
| n+c |
| n |
(1)求c的值;
(2)求数列{an} 的通项公式;
(3)若数列{bn} 是首项为1,公比为c的等比数列,记An=a1b1+a2b2+…+anbn,Bn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*.证明:A2n+3B2n=
| 4 |
| 3 |
(1)∵S1=1,
=
,
∴an+1=Sn+1-Sn=
Sn,-------------------------(2分)
∴a1=S1=1,a2=cS1=c,a3=
S2=
(1+c).
∵a1,a2,a3成等差数列,
∴2a2=a1+a3,
即2c=1+
,
∴c2-3c+2=0.---------------------------------------------------(5分)
解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)
(2)∵)∵S1=1,
=
,
∴Sn=S1×
×…×
=1×
×
×…×
=
(n≥2),-------------------(8分)
∴an=Sn-Sn-1=
-
=n(n≥2),------------------------------------------(9分)
又a1=1,∴数列{an}的通项公式是an=n(n∈N*).-----------------------------------(10分)
(3)证明:∵数列{bn}是首项为1,公比为c的等比数列,
∴bn=cn-1.---------(11分)
∵A2n=a1b1+a2b2+…+a2nb2n,B2n=a1b1-a2b2+…-a2nb2n,
∴A2n+B2n=2(a1b1+a3b3+…+a2n-1b2n-1),①
A2n-B2n=2(a2b2+a4b4+…+a2nb2n),②
①式两边乘以c得 c(A2n+B2n)=2(a1b2+a3b4+…+a2n-1b2n)③
由②③得(1-c)A2n-(1+c)B2n=A2n-B2n-c(A2n+B2n)
=2[(a2-a1)b2+(a4-a3)b4+…+(a2n-a2n-1)b2n]
=2(c+c3+…+c2n-1)
=
,
将c=2代入上式,得A2n+3B2n=
(1-4n).-----------------------------------------(14分)
另证:先用错位相减法求An,Bn,再验证A2n+3B2n=
(1-4n).
∵数列{bn}是首项为1,公比为c=2的等比数列,∴bn=2n-1.--------------(11分)
又是an=n(n∈N*),所以A2n=1×20+2×21+…+2n×22n-1①
B2n=1×20-2×21+…-2n×22n-1②
将①乘以2得:
2A2n=1×21+2×22+…+2n×22n③
①-③得:-A2n=20+21+…+22n-1-2n×22n=
-2n×22n,
整理得:A2n=4n(2n-1)+1-------------------------(12分)
将②乘以-2得:-2B2n=-1×21+2×22-…+2n×22n④
②-④整理得:3B2n=20-21+…+22n-1-2n×22n=
-2n×22n=
-2n×4n,(13分)
∴A2n+3B2n=
(1-4n)-----------------------------------------(14分)
| Sn+1 |
| Sn |
| n+c |
| n |
∴an+1=Sn+1-Sn=
| c |
| n |
∴a1=S1=1,a2=cS1=c,a3=
| c |
| 2 |
| c |
| 2 |
∵a1,a2,a3成等差数列,
∴2a2=a1+a3,
即2c=1+
| c(1+c) |
| 2 |
∴c2-3c+2=0.---------------------------------------------------(5分)
解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)
(2)∵)∵S1=1,
| Sn+1 |
| Sn |
| n+2 |
| n |
∴Sn=S1×
| S2 |
| S1 |
| Sn |
| Sn-1 |
| 3 |
| 1 |
| 4 |
| 2 |
| n+1 |
| n-1 |
| n(1+n) |
| 2 |
∴an=Sn-Sn-1=
| n(1+n) |
| 2 |
| n(n-1) |
| 2 |
又a1=1,∴数列{an}的通项公式是an=n(n∈N*).-----------------------------------(10分)
(3)证明:∵数列{bn}是首项为1,公比为c的等比数列,
∴bn=cn-1.---------(11分)
∵A2n=a1b1+a2b2+…+a2nb2n,B2n=a1b1-a2b2+…-a2nb2n,
∴A2n+B2n=2(a1b1+a3b3+…+a2n-1b2n-1),①
A2n-B2n=2(a2b2+a4b4+…+a2nb2n),②
①式两边乘以c得 c(A2n+B2n)=2(a1b2+a3b4+…+a2n-1b2n)③
由②③得(1-c)A2n-(1+c)B2n=A2n-B2n-c(A2n+B2n)
=2[(a2-a1)b2+(a4-a3)b4+…+(a2n-a2n-1)b2n]
=2(c+c3+…+c2n-1)
=
|
将c=2代入上式,得A2n+3B2n=
| 4 |
| 3 |
另证:先用错位相减法求An,Bn,再验证A2n+3B2n=
| 4 |
| 3 |
∵数列{bn}是首项为1,公比为c=2的等比数列,∴bn=2n-1.--------------(11分)
又是an=n(n∈N*),所以A2n=1×20+2×21+…+2n×22n-1①
B2n=1×20-2×21+…-2n×22n-1②
将①乘以2得:
2A2n=1×21+2×22+…+2n×22n③
①-③得:-A2n=20+21+…+22n-1-2n×22n=
| 1(1-22n) |
| 1-2 |
整理得:A2n=4n(2n-1)+1-------------------------(12分)
将②乘以-2得:-2B2n=-1×21+2×22-…+2n×22n④
②-④整理得:3B2n=20-21+…+22n-1-2n×22n=
| 1(1-22n) |
| 1-(-2) |
| 1-4n |
| 3 |
∴A2n+3B2n=
| 4 |
| 3 |
练习册系列答案
相关题目