题目内容

已知向量u=(xy)与向量v=(y,2yx)的对应关系记作vf(u).

(1)求证:对于任意向量ab及常数mn,恒有f(manb)=mf(a)+nf(b);

(2)若a=(1,1),b=(1,0),用坐标表示f(a)和f(b);

(3)求使f(c)=(pq)(pq为常数)的向量c的坐标.

解:(1)证明:设a=(x1y1),b=(x2y2),

manb=(mx1nx2my1ny2),

f(manb)=(my1ny2,2(my1ny2)-(mx1nx2)).

mf(a)+nf(b)=m(y1,2y1x1)+n(y2,2y2x2)=(my1,2my1mx1)+(ny2,2ny2nx2)=(my1ny2,(2my1mx1)+(2ny2nx2))=(my1ny2,2(my1ny2)-(mx1nx2)).

f(manb)=mf(a)+nf(b).

(2)f(a)=(1,2-1)=(1,1),f(b)=(0,0-1)=(0,-1).

(3)设c=(xy),则f(c)=(y,2yx),

解得

c=(2pqp).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网