题目内容

(2009•济宁一模)如图,在三棱柱ABC-A1B1C1中,所有的棱长都为2,∠A1AC=60°
(Ⅰ)求证:A1B⊥AC;
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求平面A1B1C1与平面ABC所成的锐角的余弦值.
分析:(Ⅰ)取AC的中点O,连接A1O,BO,在三棱柱ABC-A1B1C1中,所有棱长都为2,∠A1AC=60°,则A1O⊥AC,BO⊥AC,A1O∩BO=O,由此能够证明AC⊥A1B.
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,点A1到平面ABC的距离最大,此时A1O⊥平面ABC.设平面ABC与平面A1B1C的交线为l,在三棱柱ABC-A1B1C1中,A1B1∥AB,AB∥平面A1B1C,所以AB∥l.由此能够求出平面A1B1C与平面ABC所成锐角的余弦值.
解答:(Ⅰ)证明:取AC的中点O,连接A1O,BO,
在三棱柱ABC-A1B1C1中,
所有棱长都为2,∠A1AC=60°,
则A1O⊥AC,BO⊥AC,A1O∩BO=O,…(2分)
所以AC⊥平面A1BO而A1B?平面A1BO,
∴AC⊥A1B.…(4分)
(Ⅱ)解:当三棱柱ABC-A1B1C1的体积最大时,
点A1到平面ABC的距离最大,
此时A1O⊥平面ABC.…(6分)
设平面ABC与平面A1B1C的交线为l,
在三棱柱ABC-A1B1C1中,A1B1∥AB,AB∥平面A1B1C,
∴AB∥l,…(8分)
过点O作OH⊥l交于点H,连接A1H.由OH⊥l,A1O⊥l知l⊥平面A1OH,
∴l⊥A1H,故∠A1HO为平面A1B1C与平面ABC所成二面角的平面角.…(10分)
在Rt△OHC中,OC=
1
2
AC
=1,∠OCH=∠BAC=60°,则OH=
3
2

在Rt△A1OH中,A1O=2sin60°=
3
A1H=
15
2
cos∠A1HO=
OH
A1H
=
5
5
.…(12分)
即平面A1B1C与平面ABC所成锐角的余弦值为
5
5
点评:本题考查异面直线垂直的证明和平面A1B1C1与平面ABC所成的锐角的余弦值.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网