题目内容
已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交于E,过E作EF⊥SC交SC于F.![]()
(1)求证:AF⊥SC;
(2)若平面AEF交SD于G,求证:AG⊥SD.
解析:欲证AF⊥SC,只需证SC垂直于AF所在平面,即SC⊥平面AEF,由已知,欲证SC⊥平面AEF,只需证AE垂直于SC所在平面,即AE⊥平面SBC,再由已知只需证AE⊥BC,而要证AE⊥BC,只需证BC⊥平面SAB,而这可由已知得证.
证明:
(1)∵SA⊥平面AC,BC
平面AC
∴SA⊥BC.∵矩形ABCD,∴AB⊥BC∴BC⊥平面SAB
∴BC⊥AE,又SB⊥AE
∴AE⊥平面SBC
∴AE⊥SC,又EF⊥SC
∴SC⊥平面AEF,∴AF⊥SC.
(2)∵SA⊥平面AC,∴SA⊥DC,又AD⊥DC
∴DC⊥平面SAD,∴DC⊥AG
又由(1)有SC⊥平面AEF,AG
平面AEF
∴SC⊥AG,∴AG⊥平面SDC.∴AG⊥SD.
练习册系列答案
相关题目