题目内容
用6种不同的颜色把图中A、B、C、D四块区域区分开,若相邻的区域不能涂同一种颜色,则不同的涂法共有
- A.400种
- B.460种
- C.480种
- D.496种
C
分析:本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21,用四种颜色涂色时,有C64C41C31A22种结果,根据分类计数原理得到结果.
解答:由题意知本题是一个分类计数问题,
只用三种颜色涂色时,有C63C31C21=120(种).
用四种颜色涂色时,有C64C41C31A22=360(种).
综上得不同的涂法共有480种.
故选C.
点评:本题考查分类计数问题,本题解题的关键是看出给图形涂色只有两种不同的情况,颜色的选择和颜色的排列比较简单.
分析:本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21,用四种颜色涂色时,有C64C41C31A22种结果,根据分类计数原理得到结果.
解答:由题意知本题是一个分类计数问题,
只用三种颜色涂色时,有C63C31C21=120(种).
用四种颜色涂色时,有C64C41C31A22=360(种).
综上得不同的涂法共有480种.
故选C.
点评:本题考查分类计数问题,本题解题的关键是看出给图形涂色只有两种不同的情况,颜色的选择和颜色的排列比较简单.
练习册系列答案
相关题目