题目内容

等差数列{an}中,a1+a4+a7=39,a6=9则数列{an}的前9项的和S9等于(  )
分析:由等差数列的性质可求得a4,=13,从而有a4+a6=22,由等差数列的前n项和公式即可求得答案.
解答:解:∵在等差数列{an}中,a1+a4+a7=39,
∴a4=13,
∵a6=9,
∴a4+a6=22,又a4+a6=a1+a9
∴数列{an}的前9项之和S9=
9(a1+a9)
2
=99
故选:B.
点评:本题考查等差数列的性质,掌握等差数列的性质与前n项和公式是解决问题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网