题目内容
已知 若a=f(n)+f(n+1),则 .
0
(1)求{f(n)}、{g(n)}的通项公式;
(2)设cn=g[f(n)],求数列{cn}的前n项和;
(3)已知=0,设F(n)=Sn-3n,是否存在整数m和M,使得对任意正整数n,不等式m<F(n)<M恒成立?若存在,分别求出m和M的集合,并求出M-m的最小值;若不存在,请说明理由.
(文)已知f(x)=x3-3x,g(x)=2ax2.
(1)当-≤a≤时,求证:F(x)=f(x)-g(x)在(-1,1)上是单调函数;
(2)若g′(x)≤〔g′(x)为g(x)的导函数〕在[-1,]上恒成立,求a的取值范围.