题目内容
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且| xn+1 |
| xn |
| xn |
| xn-1 |
| yn+1 |
| yn |
| yn |
| yn-1 |
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
| xn+1 |
| yn+1 |
| xn |
| yn |
| x1-y1 |
| x2-y2 |
| x2-y2 |
| x3-y3 |
| xn-yn |
| xn+1-yn+1 |
| λ |
| λ-1 |
分析:(1)根据
=λ
把x1=x2=1代入求得x3,同理可求得x4=λ3,x5=λ6,进而根据等比中项的性质求得λ.
(2)根据根据不等式性质可知有
≥λ
≥λ 2
…≥λ n-1
=λn-1;
=λ
=λ 2
…λ n-1
=λn-1
进而可得出
≤
,再看当λ>1时得出
≥
,即
≥
,代入
+
+…+
,原式得证.
| x3 |
| x2 |
| x2 |
| x1 |
(2)根据根据不等式性质可知有
| yn+1 |
| yn |
| yn |
| yn-1 |
| yn-1 |
| yn-2 |
| y2 |
| y1 |
| xn+1 |
| xn |
| xn |
| xn-1 |
| xn-1 |
| xn-2 |
| x2 |
| x1 |
进而可得出
| xn+1 |
| yn+1 |
| xn |
| yn |
| yn+1-xn+1 |
| xn+1 |
| yn-xn |
| xn |
| yn+1-xn+1 |
| yn-xn |
| xn+1 |
| xn |
| x1-y1 |
| x2-y2 |
| x2-y2 |
| x3-y3 |
| xn-yn |
| xn+1-yn+1 |
解答:(1)解:由已知x1=x2=1,且
=λ
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有
≥λ
≥λ 2
…≥
λ n-1
=λn-1;
另一方面,
=λ
=λ 2
…λ n-1
=λn-1.
因此,
≥λ n-1=
(n∈N*).故
≤
(n∈N*).
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
≤
(n∈N*),则
≥
,
从而
≥
(n∈N*).
∴
+
+…+
=
<
(n∈N*)
| x3 |
| x2 |
| x2 |
| x1 |
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有
| yn+1 |
| yn |
| yn |
| yn-1 |
| yn-1 |
| yn-2 |
λ n-1
| y2 |
| y1 |
另一方面,
| xn+1 |
| xn |
| xn |
| xn-1 |
| xn-1 |
| xn-2 |
| x2 |
| x1 |
因此,
| yn+1 |
| yn |
| xn+1 |
| xn |
| xn+1 |
| yn+1 |
| xn |
| yn |
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
| xn+1 |
| yn+1 |
| xn |
| yn |
| yn+1-xn+1 |
| xn+1 |
| yn-xn |
| xn |
从而
| yn+1-xn+1 |
| yn-xn |
| xn+1 |
| xn |
∴
| x1-y1 |
| x2-y2 |
| x2-y2 |
| x3-y3 |
| xn-yn |
| xn+1-yn+1 |
1-(
| ||
1-
|
| λ |
| λ-1 |
点评:本题以数列的递推关系为载体,结合等比数列的等比中项及前n项和的公式,运用不等式的性质及证明等基础知识进行运算和推理论证.
练习册系列答案
相关题目