题目内容
函数f(t)=∫1t(2x-
)dx在(0,+∞)的最小值为( )
| 1 |
| x2 |
| A.0 | B.
| C.
| D.
|
f(t)=∫1t(2x-
)dx=
=t2+
-2=t2+
+
-2
又t∈(0,+∞),故f(t)=t2+
+
-2≥3
-2=
-2
等号当且仅当t2=
时成立
故选D
| 1 |
| x2 |
(x2+
| t1 |
| 1 |
| t |
| 1 |
| 2t |
| 1 |
| 2t |
又t∈(0,+∞),故f(t)=t2+
| 1 |
| 2t |
| 1 |
| 2t |
| 3 |
| ||
| 3 |
| 2 |
| 3 | 2 |
等号当且仅当t2=
| 1 |
| 2t |
故选D
练习册系列答案
相关题目